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The two-dimensional stratified flow over an obstacle placed in a channel of finite 
height is examined to determine the extent to which Long’s model provides an 
adequate description of real flows. A simple numerical method of solving Long’s 
model for obstacles of arbitrary shape is used to calculate predicted streamline 
patterns which are compared with experimental observations of the flow over 
two bluff obstacles. If only a few lee-wave modes are excited there is qualitative 
agreement between theory and experiment, but, if the flow is subcritical with 
respect to several lee-wave modes, the effects of turbulence become dominant 
and the inviscid model is no longer useful. The theory predicts that the drag on an 
obstacle can increase with decreasing speed owing to the momentum transfer to 
lee-wave motion. Direct measurement of drag indicates that there are conditions 
under which the drag does increase with decreasing speed, but under these con- 
ditions the wake is dominated by turbulence and no lee waves can be detected. 

Introduction 
For a number of years the study of stratified flow over obstacles was limited to 

mathematical analyses based on the linearization of Euler equations and the 
appropriate boundary conditions. But in 1953 Long showed that, for the special 
case of constant dynamic pressure and uniform vertical density gradient far 
upstream of the obstacle, the full equations of steady, two-dimensional inviscid 
flow could be transformed to a linear one, namely Helmholtz’s equation. This 
equation, coupled with the appropriate boundary conditions on the bounding 
surfaces and the assumption that there are no waves far upstream, represents 
a well-posed linear boundary-value problem which has served as the basis of 
several analyses of flow over obstacles of finite size. Owing to the difficulties 
presented by the boundary conditions on the obstacle, the earlier analyses of 
Long (1955) and Yih (1960) made use of an inverse method in which the exact 
shape of the object is determined only after the solution is complete and it was 
not until Drazin & Moore (1967) constructed solutions for flow over a thin vertical 
strip that a detailed description of the flow over a prescribed obstacle for a wide 
range of stratifications became available. 

The work of Drazin & Moore disclosed the puzzling prediction that, for a given 
stratification, the drag on a barrier of fixed height apparently increases without 
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bound as the flow velocity decreases. This effect is presumably a manifestation 
of the fact that as the upstream velocity is reduced the flow becomes subcritical 
with respect to an increasing number of lee-wave modes, each of which contributes 
to the wave drag. Only recently Miles (1968a, b )  has investigated the wave drag 
associated with stratified flow past various obstacles using approximation tech- 
niques which avoid the extensive algebraic computations employed by Drazin & 
Moore. In  addition to providing more complete information about the thin barrier 
in a finite channel, Miles presented drag predictions for both a thin barrier and 
a semicircular obstacle in an unbounded fluid. In  all of these cases it was again 
found that as the free-stream velocity is reduced the drag on the obstacle is 
increased. However, as Miles pointed out, this surprising proposition is subject 
to the requirement that Long’s model is an adequate description of real flows and 
there are several reasons, such as the existence of significant viscous effects or 
upstream waves, why this may not be the case. Perhaps an even more serious 
objection is that the solutions obtained from Long’s model often indicate both 
regions of closed streamline flow, which are inconsistent with tthe model itself, 
and regions in which the density increases with height, a configuration which is 
likely to be unstable. 

Unfortunately, the extensive theoretical investigation of stratified flow over 
obstacles has not been paralleled by experimental work and to date Long’s (1955) 
experiments are the only ones with which the theories may be compared. Conse- 
quently, it is the purpose of the present study to supplement these experiments 
and in particular to attempt to answer the questions concerning the validity of 
the basic theoretical model which have been raised by the recent work of Miles 
(1968). In  what follows we shall consider again the problem first posed by Long 
and, using a simple numerical method, obtain solutions corresponding to flow 
over obstacles of arbitrary shape placed in a channel of finite depth. These solu- 
tions will then be compared with experimental observations of the flow around 
obstacles towed through a tank filled with a stratified salt water solution. It will 
be shown that the discrepancy between theory and experiment, which is often 
very great, is associated with the generation of intense turbulence behind the 
obstacle. The structure of the turbulent wake is strongly influenced by the 
stratification and, in fact, bears little resemblance to the wake behind bluff bodies 
in unstratified flow. Results of the direct measurement of both total drag and 
wave drag show that this turbulent wake plays a dominant role in the flow. 

Theoretical model 
Following the notation of Miles (1968a) in which all lengths are made dimen- 

sionless using the characteristic length Hln,  where H is the channel depth, 
Long’s model is obtained if 

P(Y)U2(Y) = II 

and - 

where p(y) and U ( y )  are the density and horizontal velocity far upstream of the 
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obstacle, y is the dimensionless elevation and q and k2 are constants. The equation 
of motion then becomes (see Long 1955) 

v2s + k2S = 0, 

where IS is the dimensionless vertical displacement of a streamline from its eleva- 
tion far upstream. Kinematic conditions on each of the surfaces which bound the 
fluid yield the boundary conditions 

( 2 )  

S+y = ci ( 3 4  

6 + 0  as x - f - a ,  (3 b )  

on each surface S, and the requirement of no upstream waves, that is 

completes the specification of the problem. 
In the derivation of ( 2 )  it has been assumed that every streamline in the flow 

extends to the undisturbed region far upstream, an assumption which excludes 
the occurrence of regions of closed streamline flow. If the obstacle is external to 
the flow in the sense that it is a distortion of one of the bounding surfaces of the 
channel, then the constant in (3a) is easily determined; but, if the obstacle is 
internal to the flow, this constant, which specifies which streamline is in contact 
with the body, cannot be prescribed. This ambiguity, a familiar one in potential 
flow problems, can only be resolved by making some additional hypothesis con- 
cerning the nature of the flow. Because a sound basis for any such hypothesis is 
lacking, the theoretical development is limited to obstacles which comprise part 
of the boundary of the channel. 

For obstacles of arbitrary shape the solution of the problem posed in ( 2 )  and 
(3) is most easily accomplished through the use of a Green's function. Thus, as 
Miles ( 1 9 6 8 ~ )  has shown, the solution can be expressed in the form 

where S' is the surface of the obstacle and n is the outwardly directed normal to  
the surface. For values of k between the integers K and K +  1 the appropriate 
Green's function satisfying ( 2 )  and (3  b )  is 

K 2 G = --H(x-[) C. a;'sina,(x-()sinny sinny 

a; le-an 12-61 sin np sin ny, 

TI n = l  

1 "  
r K + l  

+ - 
where H is the Heavyside step function and 

01, = p-nzp.  

Using the boundary condition ( 3 n )  to determine S on S', (4) becomes an integral 
equation for aSpn = V on S'. Then, when V has been found, 6(x, y) can be com- 
puted directly from (4). While the solution of the integral equation is, in principle, 
straightforward, an explicit analytic solution can be found only for particular 
obstacle shapes and then only after some degree of approximation. Consequently, 
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recourse to a finite-difference technique appears to be necessary in order to obtain 
results for obstacles of arbitrary form. 

The objective of the numerical scheme is to obtain a relatively small system of 
algebraic equations which is an accurate approximation of the integral equation 
(4). This is accomplished by first dividing the path along the obstacle surface into 
N segments of length ei which are centred at the points xi,  gd and have end-points 
x , ~ ,  yi and xi+l, yi+l. Then in each interval both 6 and V are expanded in Taylor 
series about the points Ei7 Ti, leading to 

where the error is dependent on the shape of the obstacle being O(e) for a smooth 
body and O(e4) for an object with a sharp corner a t  1 = 1, in the neighbourhood of 
which V N (I - ZJ-4. In approximating the remaining integrals some care is 
required, since the Green's function has a logarithmic singularity a t  x = 5, y = y. 
To overcome this difficulty, as well as to speed convergence of the series which 
must be summed, G is expressed as the sum of a singular part G, and a regular 
part GT, where 

1 - 2e-1"-51 cos (y - y) + e--2 Iz-51 

1 - 2e-IZ-51 cos (y + 7) + e-212-51 
1 "  
r n = 1  

G, = - C n--le-nlx-tl sin ny sin ny = 

1 K  

nn=1 
and Gr = - 'c { - 2H(x - f ; )  a, sin a, (x - f ; )  - n-1 e-nlx-E1} sin ny sin nq 

1 "  + - C (a;' e-% lZ-51- n-1 e-a lx-fl> sin ny sin ny . 
n K + l  

The accurate approximation of the integrals involved in ( 5 )  is then easily ac- 
complished following the basic outline: (i) all integrals of Gr and aGrjan, as well 
as those integrals of Gs over paths which do not pass through the point (x, y), 
are computed as 

Si+i,Ti+i 

Q d l  N ei Q(&, 7%); 
f,,,i 

(ii) the integral of G, over a path passing very near (x, y) is obtained by noting 
that to O[ (x - [)2 + (y - T ) ~ ]  

the second term of which may be obtained as in (i) while the first term is deter- 
mined by approximating the integration path by several straight-line segments 
over which the integral is found analytically; (iii) because G, is a harmonic 
function, it follows from Green's theorem that the integral 

is independent of path and hence may be obtained by following lines parallel to 
the x- and y-axes along which the appropriate series are easily integrated term 
by term to yield forms for which the sum is known (see Jolley 1961). 
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N 

i=l 
c w A ( G Y ;  4- V(i)B(x,y; i) = 8(X,Y), (6) 

where A and B are the appropriate approximations to the integrals of aG/an and 
G respectively. Substituting the known values of 6 on the obstacle surface and 
requiring that (6) be satisfied at  the N points (Ei,7ji) yields a set of algebraic 
equations which can be solved for V(&, qi). These values, in turn, can be used to 
calculate 6 throughout the entire flow field. The number of points was increased 
until V varied by less than 0-1 yo when N was increased by 50 %; for the cases 
considered N was less than 50. Using this computational scheme an entire flow 
field can be computed on a Control Data Corporation 3600 in less than 1 min. 

Before comparing the results of this numerical scheme with experimentally 
observed flows, it is of interest to  consider the predicted amplitudes of the lee 
waves generated by an obstacle which has been treated by both Drazin & Moore 
(1967) and Miles (1968u), namely a vertical barrier of infinitesimal width. For 
this case the analysis is simplified, since the first term of the summation in (6) is 
identically zero. Taking this into account and noting the form of the Green’s 
function, it can be seen that far downstream of the obstacle S will approach the 
limit K 

8 N - -  a;lC, sin ny sin a, x. 
It= 1 

Hence, far downstream we find K lee-wave modes with amplitudes Cn/ct, and 
horizontal wave-number a,. 

Lee-wave amplitudes have been calculated both by Drazin & Moore and by 
Miles for the particular case of a barrier of dimensionless height in and their 
results are plotted in figure 1 along with the corresponding results obtained by 
the numerical method described above. In every case the agreement with the 
values reported by Drazin & Moore is nearly perfect. Similarly for the range 
1 < k < 4 the agreement with Miles’s ( 1 9 6 8 ~ )  variational approximation is quite 
good and it is not until k exceeds 4 that the approximate values become un- 
reliable. Comparison of the tangential velocity V ( i )  with the ‘trial’ function 
adopted by Miles indicates that this remarkable agreement is due, in large part, 
to the degree to which the ‘trial’ function approximates the true form. 

Flow visualization experiments 
The experiments discussed in this section were designed to determine the 

extent to which solutions of Long’s model describe real stratified flows and the 
principal causes of any large discrepancies. The experiments reported by Long 
(1955) indicate that for small, streamlined obstacles there is a qualitative agree- 
ment between theory and experiment over a certain range of flow conditions but, 
as will be seen from the results to be presented, they do not adequately describe 
some of the important ways in which the theory breaks down. In  fact it  turns out 
that for reasonably large baxriers the theory is adequate only over a small range 
of flow conditions. 

9-2 
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The experiments to be described here were carried out in a Lucite tow-tank 
2 m long, 18 cm deep and 18 em wide which was filled with salt water. The salt 
concentration was adjusted to provide an approximately linear variation of 
density with depth. The total density difference typically ranged from 0.02 to 
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FIGURE 1. The lee-wave amplitude parameter C ,  for a thin barrier of height in. The 
solid lines are from the numerical solution, the circles from Drazin & Moore and the 
dashed lines from Miles's variational approximation. For k > 4 the variational approxi- 
mation is inaccurate and only C, and C ,  are shown. 

0.10g/cm3 and the deviation from a linear density distribution was less than 
five per cent of this difference except within an approximately 1 cm diffusion layer 
at the bottom of the tank. As a means of visualizing the flow as well as determin- 
ing the density structure drops of several carbon tetrachloride/kerosene solutions 
which had been coloured with different oil-soluble dyes were sprayed into the 
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fluid and allowed to settle to the level where they were neutrally buoyant. 
Cylindrical obstacles of various shapes were fastened to the bottom of a floating 
platform 20cm long which was towed down t’he tank a t  a uniform speed. The 
Reynolds number, based on barrier height) typically varied from 800 for the 
large values of k2 to 3000 for runs a t  small k2. 

A permanent record of the flow was provided by colour photographs which 
were obtained using an exposure time short enough to ‘freeze’ the motion. From 
these transparencies it was possible to determine accurately the position of the 
layers of neutrally buoyant droplets which, since the flows were approximately 

FIGURE 2. Observed flow over triangular obstacle for k = 0.65. 

FIGURE 3. Calculated flow over triangular obstacle for k = 0.65. 

steady, correspond to the streamline positions calculated in the theoretical 
development. In  addition, regions of highly turbulent motion were apparent not 
only from the confused nature of the droplet distribution but also from small- 
scale variations in light intensity caused by the large gradients of refractive 
index associated with turbulent mixing. 

Unfortunately, from black-and-white reproductions of the colour photographs 
it is not possible to distinguish droplets from different layers and therefore such 
reproductions are unsuitable for illustrating the flow. Consequently, for the 
purposes of this paper, the colour transparencies have been used to construct the 
line drawings shown in figures 2, 4, 6, 8, 10, 12 and 13. I n  these drawings a solid 
line represents the position of a layer of marker drops which were not seriously 
perturbed by small-scale turbulent motions, and a dashed line indicates the 
central position of a line of drops which had been dispersed by small-scale 
motions but not to  the point that it had lost its identity as a line. The shaded 
areas are regions of the flow which were so turbulent that marker particles were 
uniformly distributed throughout. The nature of the flow implied by the line 
drawings can be seen by comparing figure 4 (a)  with figure 4 ( b ) ,  plate 1, which is a 
reproduction of the transparency from which the drawing was constructed. I n  the 
experiment the obstacle was, of course, placed at  the top of the tank, but in the 
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illustrations this configuration has been inverted to conform with the more usual 
geometry of flow over a barrier. 

Figure 2 illustrates an example of supercritical flow (k = 0.65) over a triangular 
barrier of dimensionless height AT and width #T. For comparison, figure 3 is 
a plot of streamline positions calculated for the same conditions using the 
numerical method outlined in the previous section. The considerable influence 
of boundary-layer separation and the formation of a turbulent wake, both un- 
accounted for in the theory, is indicated by the fact that  the streamlines reach 
maximum elevation some distance behind the obstacle and that t h e  observed 
streamline displacements are considerably larger than predicted. This same 
effect occurs in unstratified flow over bluff bodies, and the only obvious effec,t of 
stratification is the suppression of the turbulent wake downstream of the body. 

I 1 

FIGURE 4 ( a ) .  Observed flow over triangular obstacle for k = 1.55. 

I I 

FIGURE 5 .  Calculated flow over triangular obstacle for k = 1.55. 

Figures 4 to 7 concern flows for the range 1 < k < 2 in which a single mode of 
lee wave is excited. I n  figures 4 and 5, which represent observed and predicted 
flows over the triangular obstacle for k = 1.55, the effects of boundary-layer 
separation and turbulence are again evident. The point of separation is much 
further downstream than in the supercritical case and the flow presses down over 
the rear face of the obstacle even more completely than the theory would predict. 
However, under the first wave trough the boundary layer separates, causing the 
flow under the first wave crest to become highly turbulent. Typically, in all the 
experiments performed, the wave amplitudes downstream were smaller than 
predicted. It is likely that in this case part of the discrepancy is due to the transient 
nature of the experiments, but results presented in the next section indicate 
that not all the discrepancy can be ascribed to this and therefore it seems probable 
that the turbulent motions extract some of the energy which would otherwise go 
into wave motion. This effect is much more evident in the examples of flow at 
higher values of k which are discussed below. 
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Figures 6 and 7 depict flow over a thin vertical barrier of dimensionless height 47 
for Ic = 1.50. Here again the wake immediately behind the obstacle is compressed 
by the first wave trough, which presses down even farther than predicted, and the 
region under the first crest is highly turbulent. Above the first trough there is an 
isolated region of turbulence which, in the experiment itself, was observed to 

FIGURE 6. Observed flow over thin barrier for k = 1.50. 

I I 

FIGURE 7. Calculated flow over thin barrier for k = 1.50. 

FIGURE 8. Observed flow over triangular obstacle for k = 2.70. 

FIGURE 9. Calculated flow over triangular obstacle for k = 2.70. 

move along with the obstacle as a body of slowly mixing fluid. The predicted 
flow pattern contains no hint of this bubble. As in the flow over the triangular 
barrier, the observed wavelength is consistent with the theory but the position of 
the first wave crest is displaced well downstream from its predicted position. 

Figures 8-1 1 deal with flows which are subcritical with respect to two modes of 
lee wave. Here, for the first time, the predicted flows contain regions of closed 
streamline flow which, as has been mentioned earlier, are not consistent with the 
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assumptions upon which the theoretical model is based. The prediction of Long 
(1955) and Miles (1968a) that such closed streamline regions are likely to be 
unstable seems to be substantiated by the occurrence of turbulent patches in the 
centre of the rotor regions. As in the two previous examples, the streamlines in 
both the observed flows press down behind the obstacle and then appear to 
separate, causing the flow to become highly turbulent. The flow over the triangu- 
lar obstacle is not seriously affected by this turbulence and, as in the cases dis- 
cussed earlier, the wavelength, amplitude and horizontal position of the dominant 

---/.----- ---_____-- 
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FIGURE 10. Observed flow over thin barrier for k = 2.25. 

FIGURE 11. Calculated flow over thin barrier for k = 2.25. 

lee wave are in moderate agreement with theory. The flow over the thin barrier, 
on the other hand, bears very little resemblance to the predicted flow. The flow 
immediately behind the obstacle is apparently laminar but, as in the other 
examples discussed, the boundary layer seems to separate as soon as the flow 
along the boundary begins to decelerate ; in this case the resulting turbulence 
completely destroys the lee-wave structure. Presumably the distinction between 
the two obstacles lies in the fact that, judging from the amplitudes of the pre- 
dicted lee waves, the thin barrier constitutes a much greater disturbance to the 
flow and therefore produces a more violently turbulent wake. 

For values of k greater than 3, the flow takes on a character quite unlike that 
predicted by Long’s model. The flows depicted in figures 12 and 13 are typical 
of this regime and may be contrasted with the formal solutions presented by 
Drazin & Moore (1967) for large k. While the figures depict flows in the range 
3 < k < 4, the flows observed in the range 4 < k < 5 were virtually identical. 
Instead of the very complex lee-wave patterns predicted by the theoretical model, 
it  can be seen that those streamlines which originate a t  elevations greater than 
the obstacle height are practically undisturbed. On the other hand, the lower 
streamlines are laminar as they flow up and over the obstacle, and then become 
highly turbulent and break down to form a well-mixed wake of approximately 
the same height as the obstacle. 
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One final point of interest concerning the flow visualization experiments is 
the question of the nature of the flow upstream of the obstacle. It may be recalled 
that the theoretical model is based on the assumptions that the velocity is 
everywhere continuous and that there are no waves upstream of the obstacle. 
As a consequence of these assumptions the model predicts that all disturbances 
to the parallel flow die out exponentially upstream of the obstacle. But these 
assumptions have been subject to considerable controversy beginning with 
Long’s (1955) observation of a region of jet flow upstream of the obstacle. 

FIGURE 12. Observed flow over triangular obstacle for k = 3.40. 

__--- ---_--- 
_----_____---I 

FIGURE 13. Observed flow over thin barrier for k = 3.60. 

Trustrum ( 1964) investigated the initial value problem corresponding to Long’s 
model and suggested that the final state may involve waves upstream while 
Bretherton (1967) solved the initial value problem for the limit k --f co and found 
that ahead of the obstacle there is a ‘blocked’ region of stagnant fluid which is 
separated from the main flow by a thin shear layer. (Kao (1965) assumed that 
such blocked regions exist and calculated flows over barriers using an ad hoc 
modification of Long’s model.) The phenomenon of blocking has been investi- 
gated experimentally by Maxworthy (1968) for the analogous situation in a 
sphere in a rotating fluid. 

I n  no case investigated here were any waves observed upstream of the obstacle 
and observation of vertical dye streaks positioned in front of the barrier dis- 
closed neither the jets seen by Long nor any obvious region of blocked flow. There 
are quite significant discrepancies between the theoretical and observed position 
of the streamlines upstream of the barrier but it is not possible to determine how 
much of this is due to blocking and how much is due t o  the upstream influence of 
the discrepancies found in the wake. It is, however, evident from the examples 
presented, as well as from additional experiments in the range 4 < k < 5 ,  that 
the effects of upstream blocking, if it occurs, are insignificant compared with the 
other differences between theory and experiment. 
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Drag and wave drag 
I n  addition to the flow visualization experiments described in the previous 

section, a series of experiments were performed to determine how the drag on an 
obstacle is influenced by stratification. In  order to accomplish this it was felt 
desirable to measure both the total drag on the obstacle and the amplitudes of 
the various lee-wave modes, from which the wave drag could be computed. 
According to Long's laminar inviscid flow model the total drag and the wave 
drag are equal but, owing to the discrepancies between this theory and the experi- 
mental observations, it would be unreasonable to  presume that this would be the 
case. 

Unfortunately it was impossible to make accurate total drag measurements on 
obstacles which were contiguous with either of the horizontal boundaries of the 
fluid. Attempts to  tow the barrier along the lower boundary were abandoned 
because of the errors introduced by frictional drag on the bottom while attempts 
to measure the drag on an obstacle towed along the free surface were overcome 
by surface tension forces resulting from the fact that the obstacle compressed 
a surfactant-contaminated surface film as it swept down the tank. Consequently 
the obstacle, a thin barrier of dimensionless height in, was suspended on thin 
wire supports below a floating platform consisting of two narrow floats which 
were aligned parallel to the direction of motion. The top of the barrier was 
below the free surface. The entire assembly was attached to a pendulum balance 
mounted on a second floating platform which was then towed ahead of the 
barrier assembly a t  a uniform speed. During the course of such a run the drag on 
the barrier assembly was recorded and simultaneously photographs of the type 
described in the previous section were taken to record the position of several 
different layers of marker particles. 

From (6) in the second section it is seen that far downstream of the barrier the 
lee-wave structure becomes dominant and 

K 
8 N 2 o l ; ' ~ ,  sin ny sin an (x + 0,). 

n= 1 

As Miles (1968a) has shown, this leads to  a drag on the barrier, D,  which may be 
characterized by the wave drag doefficient 

where d is the dimensionless vertical chord of the barrier. From this relation 
the wave drag coefficient can be calculated once the amplitudes of the various 
lee-wave modes are known. I n  order to estimate the amplitudes, C,, the values 
of S(x,y) a t  each of several horizontal stations, xi, were fitted in a least square 
error sense to the form N 

n= 1 
8 ( ~ ,  Y) = Z; An (xi) sin my, 

where N was either K or K +  1. The resulting values of A ,  for n < K were 
insensitive to the choice of N and AK+l was always small; if any periodicity was 
evident, the wavelength was that of one of the lower modes. 
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While the primary purpose of this modal decomposition was the determination 
of the lee-wave amplitudes, the curves A,(%) contain some interesting informa- 
tion concerning the transient nature of the experiments. This can be seen in 
figure 14, in which the curves labelled (a) and ( 6 )  are A,(%) for k = 1.35 and 
k = 1-50 respectively and ( c )  and ( d )  are A,(z) and A&) respectively for 
k = 2-20. With the exception of (c ) ,  these curves indicate a decrease of both 
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FIGURE 14. The lee-wave amplitude parameter A,(z)  used in determining 
wave drag. The vertical scale is the same for each curve. 

amplitude and wavelength with increasing distance behind the barrier. Because 
the group velocity of these waves decreases with decreasing wavelength, it  is 
reasonable to ascribe this effect to the dispersion of the transient lee waves. Pre- 
sumably the slower-moving short-wavelength waves were falling behind the 
barrier as the flow approached the steady state which involves only periodic 
lee-wave components. This situation is similar to the development of a surface 
wave behind a moving disturbance which has been studied by Wurtele (1955) and, 
indeed, the curves in figure 14 bear a strong resemblance to the development he 
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predicted. Long (1955) also found that lee-wave aniplitudes decreased down - 
stream; since, in terms of wavelength, his channel length is comparable to that 
used here it is likely that dispersive effects were responsible for some of this 
decrease. 

The results of the drag experiments are contained in figure 15, where the total 
drag coefficient, COT, measured for the range 0 < k < 4 is plotted along with 
measured wave drag coefficients for the range 1 < k < 3. I n  those cases where the 
flow was far from the steady state the estimates of lee-wave amplitude are subject 

0 1 2 3 

k 
4 

FIGURE 15. Measured values of total drag coefficient, GDT, and wave drag coefficient, 
CDW, for a thin barrier of height in placed with one edge at  a height of in. 

to considerable uncertainty, but in most cases (curve (a )  being an exceptional 
case) the amplitudes C, could be determined to within 25%. The wave-drag 
coefficients calculated from (7) may, therefore, be in error by a factor of 1.5. As in 
the cases discussed in the previous section, for k > 3 the flow in the wake of the 
barrier was so turbulent that  the lee-wave modes could not be identified. Total 
drag measurements for k > 4 were abandoned because the drag no longer reached 
a steady value during the course of an experiment, apparently because the opera- 
tion of towing the barrier became unstable when the drag became a decreasing 
function of speed. 

The data in figure 15 serve to point out certain interesting facts concerning 
the drag associated with stratified flow. First, the drag on an object may be 
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substantially increased or reduced as a result of stratification. Secondly, the 
drag associated with lee-wave generation is not, for the thin barrier at  least, the 
dominant effect of stratification. Thirdly, as can be seen by the behaviour of the 
total drag coefficient in the neighbourhood of lc = 4, stratification can lead to the 
situation where the total drag on an obstacle increases as the speed of the obstacle 
decreases. Finally, the absence of any organized wave structure for k > 3 tends 
to corroborate the observation made in the previous section that the complex 
lee-wave patterns found in solutions of the theoretical model for large k are 
apparently unstable and do not occur in real flows. 

Unfortunately it is not possible to make a proper comparison between measured 
wave drag and that predicted by Long’s model because, as mentioned in con- 
nexion with the theoretical model, without further hypothesis the model can be 
applied only to obstacles which are contiguous to one of the horizontal boundaries. 
As in the theory of external potential flows, some additional constraint must be 
imposed to determine the position of the stagnation points and hence to obtain 
an unambiguous solution. However, for an infinitely thin barrier it seems quite 
reasonable to require that the lift on the obstacle be zero. When this constraint, 
which, it can be shown, is equivalent to requiring that the circulation computed 
along the obstacle surface vanish, is included in the specification of the theoretical 
model the problem becomes determinate and the techniques described earlier 
can then be used to calculate predicted flow patterns and drag coefficients. Com- 
parison of the predicted and observed positions of the front stagnation point 
indicates that the zero-lift hypothesis is reasonable, although the experimental 
precision is insufficient to detect small discrepancies. The predicted drag GO- 

efficients are much smaller than for a barrier of the same height which is adjacent 
to a boundary. In the range 1 < k < 2 the predicted value of C,, falls between 
0.04 and 0.10, which is significantly smaller than the observed wave drag co- 
efficient, while for 2 < Ic < 3 the observed coefficients are in reasonable agreement 
with the predicted values, which fall between 0-3 and 0.5. 

Conclusion 
This study was originally motivated by the theoretical studies of Drazin & 

Moore (1967) and Miles ( 1 9 6 8 ~ )  which were based on Long’s equation for the 
motion of a stratified fluid. These investigations, which were the first to calculate 
exactly the flow over obstacles of prescribed shape, predicted that the excitation 
of lee waves could lead to extremely large drags. However, as Miles pointed out, 
these predictions are subject to two serious objections: namely those solutions 
which are associated with large drags are not consistent with the derivation of 
Long’s equation and, even if they are interpreted as legitimate steady-state 
flows, these solutions probably represent unstable motions. 

Measurements of wave drag and total drag demonstrated that, while the 
influence of stratification on drag is considerable, this effect is due, in large part, 
to phenomena which are not described by Long’s equation. This discovery led, 
in turn, to an investigation of the discrepancies between theoretically predicted 
flows and those observed experimentally. Towards this end, a simple method of 
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solving Long’s model for arbitrary prescribed obstacles was devised and the 
resulting flow patterns were compared with experiment. 

On the surface, the experimental procedure adopted here appears to include 
two obvious improvements over that used by Long (1955). First, the same 
obstacle was used in the theoretical calculations and in the corresponding experi- 
ment. Secondly, the stratification was much more carefully controlled than in 
the earlier experiments and, in contrast to the method employed by Long, a 
smooth variation of density as well as a nearly constant density gradient was 
assured by the manner in which the tow tank was filled. The first improvement 
is of little consequence since the discrepancy between experiment and theory 
invariably overshadows the slight difference in the method of calculating the 
theoretical solution. The fact that the fluid is strongly stratified even near the 
boundary supporting the obstacle may, however, account for some of the differ- 
ences between Long’s observations and those made here, particularly in reference 
to upstream influence. 

As long as only a few lee-wave modes have been excited the observed flow is 
qualitatively similar to that predicted. The most obvious discrepancies are due 
to turbulence associated with boundary-layer separation and to isolated patches 
of turbulence which seem to occur where the theory would predict almost vertical, 
or even closed, streamlines. It is interesting to note that the point of boundary- 
layer separation is strongly influenced by the lee-wave structure and that typi- 
cally the major source of turbulence seems to be boundary-layer separation under 
the first lee-wave trough. This separation is apparently caused by the adverse 
pressure gradient encountered by the boundary layer after it passes through the 
low-pressure region under the first trough; an adverse pressure gradient may also 
account for the large turbulent bubble found on the boundary opposite the 
obstacle in figure 6. The internal patches of turbulence may be due either to 
a statically unstable density configuration or to excessive shear. Both turbulence 
production mechanisms are associated with steep lee waves. The experiments 
indicate that the lee-wave amplitudes decrease downstream; Long observed this 
and attributed it to turbulence. The experiments of the fourth section indicate 
that, in both experimental programmes, this is partly the result of dispersive 
effects; it should be noted in this context that curve (c) in figure 14 shows little 
spatial decay although the small-scale distortions are surely the result of 
turbulence. 

It is not until the flow becomes subcritical with respect to several lee-wave 
modes that the predicted drag coefficients become anomalously large and it is 
for this condition that the theoretical model no longer provides even a qualitative 
picture of real flows. When the parameter k becomes large, turbulence becomes 
dominant and the flow in the wake of the obstacle may be described as an internal 
hydraulic jump. The flow remains laminar as it passes over the  obstacle and 
forms an intense jet immediately downstream. Then this jet suddenly separates 
from the horizontal boundary behind the obstacle and erupts into a violently 
turbulent wake of approximately the same height as the obstacle. Those stream- 
lines which originate at  heights greater than the obstacle are not greatly disturbed 
by the barrier and in no part of the wake is there any evidence of organized wave 
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motion. This distinctive flow rkgime was apparently not observed by Long 
probably because he had intentionally restricted his study to conditions for which 
the theoretically predicted flow appeared to be stable. This type of flow is, 
however, deserving of study and may be of considerable importance on a meteoro- 
logical scale (figure 21 of Lighthill’s (1967) article on waves may be an example of 
this rdgime). The fact that the upstream jets observed by Long could not be 
detected remains unexplained. 

In  conclusion, it seems fair to say that solutions of Long’s model provide a 
qualitative picture of real stratified flows only for a limited range of conditions. 
The anomalous drag coefficients and complex lee-wave wakes predicted by the 
application of the theory outside this range of conditions are spurious. 
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